

Hybrid Systems HYBRID CUBE

Oberhausen, Germany

PV-Hybrid DC Power Solutions For Unstable Grids On Telecom Wireless Sites

HOW TO

b+w Experience

- Established in 1980
- Central design and manufacturing in Oberhausen
- Production of power systems opened in 1992
- Nokia OEM partner for power units since 1992
- Delivered over 100.000 power distribution units since 1992
- Delivered over 70.000 systems since 1992

Quality Standards: ISO 9001:2000, ISO 14001 Up to maximum 1.000 Systems per month

b+w Experience

Headquarters, Oberhausen

b+w Experience

Production, Oberhausen

Situation On Telecom Wireless Sites

Operating costs of tower infrastructure, like diesel generators, air-conditioning equipment, and security and site rentals, form a significant portion of nearly 60% of site expenses.*

*Source: Capgemini, Telecom, Media & Entertainment

Oil Prices Go Up

Oil prices have been on everyone's mind, having spiked 141% over the last 3 years.

Oil price performance in the last 3 years

Latest:

119.16

Source: Money Week 2012 4 17

Existing Site Solution: With PV-Hybrid Power Components Adapting To Infrastructure

Case Study Nigeria: PV-Hybrid Solution Vs. Shelter 70% savings

OPEX calculation shows more than 70% energy saving with a PV-Hybrid power solution vs. a shelter powered by diesel genset 24/7.

Green Field Site Solution: With SolarCube Low Energy Passively Cooled Outdoor Cabinet

Second life option

Existing BTS can be removed from conventional shelters and outdoor systems and integrated into the SolarCube to optimize operating expenses.

Outer dims w/o PV max.	2420 mm H x 1822 mm W x 1617 mm L
Outer dims with PV max.	2860 mm H x 2011 mm W x 1071 mm L
Weight	870 kg net

Case Study India: SolarCube Installation

Material lifting

Cabinet installed

Case Study India: SolarCube Installation

Equipment installed

Equipment installed in progress

Case Study India: SolarCube Installation

Final integrated cabinet with equipment

Case Study India: SolarCube Vs. Shelter 50% savings

ON GRID SITE- GSM SOLO (Solar+Battery Bank+SEB)

	Equipment Load (Watts)					Power Consumption / KWH/Day		Power Consumption / KWH/ Month		
Details	Conventio	nal Shelter	Advanced S	olar Cube	Hrs of operation	Conventional Shelter	Advanced Solar Cube	Conventional Shelter	Advanced Solar Cube	
	Specs	Load in Watts	Specs	Load in Watts		KWH	КШН	KWH	КШН	
BTS	BTS Incl MW	1200	BTS Incl MW	1200	24	28.80	28.80	864	864	
Air con	2 TR	3200	NA	-	10	32.00		960		
Fan	NA		FCU	141	24		3.38		102	
Transformer heat	NA		Isolation Trnf	17	24		0.41		12	
Battery	VRLA 300Ah	83	LI-ION 42AH	23	24 Hrs Float chrg	1.99	0.55	60	161	20
SMPS	2800W Module	2800	High Eff 1800W	1025	24	5.38	0.86	161		
Total kWh					•	68	34	2045	2045	102
Difference						3	4	10	025 1	L025

Note: Battery Capacity for Conventional shelter is High to cater to 8 hrs Backup. In case if Integrated shelter is having the same BB AH, the Consumption will increase by 0.35W/ Day as float charging.

Case Study India: SolarCube Vs. Shelter 50% savings

50% energy saving

Case Study Brazil: SolarCube Vs. Shelter 87% savings

Shelter, Brazil

SolarCube, Brazil

Case Study Brazil: SolarCube Vs. Shelter 87% savings

Base station Aircon Fan	600 5.000	24	14,4	5.256	5050	
Aircon Fan	5.000	0.4			5256	
Fan		24	120	43.800	0	
	100	24	2,4	0	876	
Transformer	38	24	0,91	332,9	0	
Transformer HE	17	24	0,41	0	148,9	
Battery Lead	92	24	2,2	805,9	0	
Batter Li-Ion	23	24	0,55	0	201,48	
Rectifier (losses)	60	24	1,44	525,6	0	
Rectifier LP (losses)	36	24	0,86	0	315,4	
						•
Total kWh/Y				50.720,4	6.797,78	0- /

Case Study Brazil: SolarCube Vs. Shelter 87% savings

OPEX calculation from EADS shows a 87% energy saving with SolarCube vs. a Shelter.

Green Field Site Solution: SolarCube + HybridCube Independent DC Power Supply

Off grid wireless sites

- · No AC supply available on site
- DC SolarCube plus HybridCube
- Solar power and battery backup
- Supplemented with standby DC generator

SolarCube DC

HybridCube DC

HybridCube Independent DC Power Supply

The b+w HybridCube is a compact independent off grid DC power supply system for outdoor telecom equipment utilising solar panels, diesel generator and batteries.

Break Even Expected At 2-3 Years

Our Solution For A Typical Green Field Telecom Tower Infrastructure

Conventional Shelters with DG Sets

HybridCube Hybrid Power Independent DC PowerSupply SolarCube Low Energy Passively Cooled Outdoor Cabinet

The Customer Benefits

Your questions please?

HOW TO

use less

Contact: Amalio Leon Sales & Marketing b+w Electronic Systems GmbH & Co. KG Zur Eisenhuette 11 D-46047 Oberhausen Mobile: +34 699 700 337 Mail to: amalio.leon@b-wspain.com